

0960-894X(94)00317-3

BALANCED ANGIOTENSIN II RECEPTOR ANTAGONISTS. II.^{1,2} 4-AMINOMETHYL- and ACYLAMINOMETHYLIMIDAZOLES

Richard E. Olson,* Jie Liu, George K. Lalka, Mary K. VanAtten, Ruth R. Wexler, Andrew T. Chiu, Tam T. Nguyen, Dale E. McCall, Pancras C. Wong and Pieter B.M.W.M. Timmermans

The DuPont Merck Pharmaceutical Company, Experimental Station, P.O. Box 80402, Wilmington, DE 19880-0402

Abstract: The introduction of aminomethyl and acylaminomethyl substituents at the imidazole 4-position of 1-biphenylmethylimidazole-5-carboxylates imparts affinity for the AT₂ receptor. The highest affinity was found with the 4-(2-pyridyl)-piperazin-1-ylmethyl group and the use of hexanoylsulfonamide as a tetrazole replacement, which led to XM953 (18d), with an AT₂ IC₅₀ of 20 nM and an AT₂/AT₁ IC₅₀ ratio of 3.

Losartan potassium (DuP 753, CozaarTM) (1) is a novel angiotensin II (Ang II) antagonist in Phase III clinical trials for the treatment of hypertension. The antihypertensive effects of losartan are mediated by antagonism of the Ang II AT₁ receptor subtype.³ Losartan and other Ang II antagonists currently in clinical trials have very low affinity for a second Ang II receptor, the AT₂ site, which has been found in many tissues, including adrenal and brain.⁴ We have recently become interested in designing nonselective AT₁/AT₂ nonpeptide antagonists.^{1,2} Higher circulating Ang II levels have been observed after continuous treatment with losartan in animal models and in the clinic,⁵ and AT₂-mediated effects could appear in the context of chronic stimulation of the AT₂ site. In addition, recent studies have indicated that the AT₂ receptor may have a role in wound healing, cardiac remodeling and cerebral blood flow.⁶

Nonpeptide Ang II antagonists selective for AT₂, such as PD123,177 (IC₅₀ = 66 nM) (4) have been described by workers at Parke-Davis.⁷ Recently, nonpeptide AT₁ antagonists with significant affinity for the AT₂ site have been reported by Dr. Karl Thomae⁸ (BIBS 39; AT₁/AT₂ K₁'s = 29/480 nM) and Hoechst⁹ (S0029;

 AT_{1}/AT_{2} IC₅₀'s = 0.3/775 nM). Very recently Merck has reported nonpeptides, such as L-162,441, ¹⁰ with subnanomolar affinity for both Ang II receptor subtypes. ^{11,12}

Our objective was to discover orally active nonpeptide Ang II antagonists with AT $_1$ potency < 10 nM and AT $_2$ /AT $_1$ IC $_{50}$ ratios ≤ 1 . We believed that such properties would minimize antihypertensive dosage levels, while maximizing AT $_2$ blockade. When the structure of losartan (1) was compared with that of PD123,177 (4), it appeared that the addition of lipophilic acylaminomethyl substituents to the imidazole ring of (1) might impart AT $_2$ affinity. Noting the excellent AT $_1$ affinity and in vivo activity of imidazole-5-carboxylates, such as DMP 811 (2), 13 and having found modest AT $_2$ affinity in certain imidazoles with large substituents at the imidazole 4-position, such as XC331 (3) 14 (AT $_2$ IC $_{50}$ = 6.7 μ M), we decided to prepare 4-(acylaminomethyl)imidazole-5-carboxylates.

Chemistry

The selective reduction of diester (5)¹⁵ with DIBAL-H provided a convenient entry to the target imidazoles (Scheme 1),¹⁶ and gave the opposite regiochemistry from that observed with lithium tri-t-butoxyaluminum hydride. ^{15,16} The protected alcohol (6) was converted to the mesylate and then treated with various nucleophiles. For example, treatment of the mesylate with sodium azide, followed by reduction of the azide

Scheme 1

CO₂Me

BPTT

BPTT =

biphenyltrity/itetrazole

CO₂Me

BPTT

BPTT

(5)

BPTT

BPTT

(6)

$$A_1A_1A_1A_2A_2A_3$$
 $A_2A_1A_3$
 $A_1A_1A_4$

BPTT

(8)

 $A_1A_1A_2A_3$
 $A_1A_1A_4$
 $A_1A_1A_2A_3$
 $A_1A_1A_4$

BPTT

(8)

 $A_1A_1A_2$
 $A_1A_1A_3$
 $A_1A_1A_4$
 $A_1A_1A_4$

BPTT

(14)

 $A_1A_1A_2$
 $A_1A_1A_3$
 $A_1A_1A_4$
 $A_1A_1A_4$
 $A_1A_1A_4$

BPTT

(15)

NRE (or -NHE)

NRE (or -NHE)

BPT =

BPT |

BP

Reagents: a. DIBAL-H, THF, -70°-RT; b. MnO₂, THF; c. Ms₂O, diisopropylethylamine, CH₂Cl₂, -40°-0°; d. NaN₃, DMSO, then Ph₃P, aq. THF; e. dialkyl or cyclic amines, DIEA, CH₂Cl₂, RT; f. amines, NaCNBH₃, HOAc/NaOAc, DMF, RT; g. i: R"COCl or R"CO₂H + carbonyldiimidazole, TEA, THF or DMF; ii: Boc₂O or i-butylchloroformate, TEA, CH₂Cl₂; iii: R"NCO, K₂CO₃, DMF; h. MeOH, 65°; i. aq. NaOH, MeOH, then HCl; j. LAH, THF, 0°-RT; k. aq. HCl, THF; l. 4-(2-pyridyl)piperazin-1-yl(methyl)chloroaluminum, CH₂Cl₂, 10°-RT.

with triphenylphosphine and acylation of the resulting amine (8) provided the amides, ureas and carbamates (13), which were detritylated in hot methanol and then saponified to give (10). Alternatively, treatment of the mesylate with secondary and cyclic amines gave amino esters (9), which were deprotected to give the target

amines (11) or piperazines (12). The alcohol (6) was also oxidized to carboxaldehyde (7), which underwent reductive amination to give amines (9), which were converted to (10) as described above, or deprotected to give (11) or (12). The imidazole-5-methanol (14) and carboxaldehyde (15) were prepared from (9) using standard methods. Amidation of diester (5) with the aluminum amide ¹⁷ generated from 1-(2-pyridyl)piperazine gave the imidazole-4-amide, which was deprotected as above to give (16). The acylsulfonamides and sulfonylcarbamates (17) and (18) were synthesized using the methods shown in Scheme 1 in conjunction with literature procedures. ^{1,12}

Discussion

The addition of nitrogen-containing substitutents at the imidazole 4-position enhanced AT₂ affinity relative to DMP 811, while generally leaving AT₁ affinity unchanged (2-20 nM). An exception is the N-diphenylacetyl-glycine (10a), which had relatively poor AT₂ and AT₁ affinity (10 μ M and 0.1 μ M, respectively). Removal, or replacement of the N-carboxymethyl group of (10a), and the use of other acyl groups (10b-g) led to improved affinity for both Ang II subtypes, with AT₂ activity ranging from 4 - 0.3 μ M. An unexpected improvement in AT₂ affinity (90 nM) was found with tertiary amines (11).

Table 1. Binding Affinities of 4-[Acyl]aminomethylimidazoles (10) and (11)

		IC ₅₀ (nM) ¹⁹		
Ex. No.	X	AT ₂	AT_1	
10a	-N CHPh2	7,000	100	
	СО₂Н			
10ь	-NHCO ₂ -t-Bu	4,000	6	
10c	-N(CH ₂ Ph)CO ₂ -t-Bu	1,000a	9	
10d	-N(CH ₂ Ph)CO ₂ -i-Bu	800	20	
10e	-NHCOCH(Ph) ₂	600	10	
10f	-N(CH ₂ Ph)COCH ₂ Ph	400	20	
10g	-N(CH ₂ Ph)CONHPh	300	2	
11a	$-N(n-Pn)_2$	200	2	
11b	-N(CH ₂ Ph)-n-Bu	90	3	

^a IC₅₀ estimated from biphasic displacement curve

Our attention then turned to the use of substituted piperazinylmethyl at the imidazole 4-position. An improvement in AT₂ affinity vs. (11b) was observed in the 2-pyridylpiperazine XH148 (12j) (60 nM), and in phenylpiperazine (12h) (50 nM), which has an AT₂/AT₁ IC₅₀ ratio of 10. Modifying the length of the alkyl substituent at the 2-position of the imidazole ring, as in (12k) and (12l), resulted in lower AT₂ affinity. The use of an "ortho-fluoro"-biphenyl group, which has been shown to increase AT₂ affinity several fold in imidazoles related to DMP 811, led to decreased AT₂ activity in this series (12m). The addition of piperazine ring substituents²⁰ did not change (12n) or decreased AT₂ affinity (12o).

2232 R. E. Olson et al.

Table 2. Binding Affinities of Piperazines (12), (14), (15) and (16)

							IC ₅₀ (nM)	19
Ex. No.	R	R ²	L	Ra	R ⁵	<u> </u>	AT ₂	AT ₁
12a	benzoyl	n-Pr	CH_2	H	CO ₂ H	Н	>10000	5
12b	cyclopropylcarbonyl	n-Pr	CH_2	н	CO ₂ H	Н	6000	10
12c	2-methoxyphenyl	n-Pr	CH_2	H	CO ₂ H	H	3000	2
12d	diphenylacetyl	n-Pr	CH_2	Н	CO ₂ H	Н	1000	10
12e	2-chlorophenyl	n-Pr	CH_2	Н	CO ₂ H	Н	600	2
12 f	phenyl ^a	n-Pr	CH_2	Н	CO ₂ H	Н	400	2
12g	4-fluorophenyl	n-Pr	CH_2	Н	CO ₂ H	H	80	3
12h	phenyl (XH669)	n-Pr	CH_2	H	CO_2H	H	50	5
12i	2-pyrimidinyl	n-Pr	CH_2	H	CO ₂ H	Н	80	2
12j	2-pyridyl (XH148)	n-Pr	CH_2	H	CO ₂ H	Н	60	4.2
12k	2-pyridyl	n-Bu	CH_2	H	CO_2H	Н	700	2
121	2-pyridyl	Et	CH_2	H	CO_2H	Н	500	20
12m	2-pyridyl	n-Pr	CH_2	H	CO ₂ H	F	200	0.9
12n	phenyl	n-Pr	CH_2	Me	CO ₂ H	H	70	2
12o	phenyl	n-Pr	CH_2	benzyl	CO ₂ H	Н	1000	10
14	2-pyridyl	n-Pr	CH_2	H	CH ₂ OH	H	>10000	10
15	2-pyridyl	n-Pr	CH_2	H	CHO	Н	1000	2
16	2-pyridyl	n-Pr	CO	Н	CO ₂ H	Н	700 ^b	2

a (12f) is the piperidine (4-deaza-analog) of (12h)

As a result of our collaboration in the Ang II area with Merck Research Laboratories, we became aware of the finding by Merck scientists that certain sulfonamide-based tetrazole replacements frequently provide increased AT₂ affinity. The benzoyl- and c-propylcarbonylsulfonamides²¹ (18a) and (18b) showed lower AT₂ affinity than tetrazole XH148 (12j), however, several alkyl- and alkoxycarbonylsulfonamide based analogs of (10) and (12) were found to have \leq 100 nM affinity for the AT₂ receptor, with hexanoylsulfonamide (18d) (XM953) having the highest AT₂ affinity (20 nM) and lowest AT₂/AT₁ ratio (3) observed in this series (Table 3). Thus, while the "ortho-fluoro" effect 1 did not enhance the AT₂ activity provided by the imidazole 4-substituent, alkyl- and alkyloxycarbonylsulfonamide tetrazole replacements provided high AT₂ affinity, while not detracting from AT₁ activity.

Consistent with their AT₁ activity, most of the 4-substituted imidazoles prepared in this study showed potent antihypertensive activity after intravenous administration to renal hypertensive rats (RHR). However, the

^b IC₅₀ estimated from biphasic displacement curve

activity after oral administration was limited. Two compounds, (11b) and (17b), with AT₂ affinity <100 nM, but not (12j), (12h) or (18d) (XM953), showed significant and prolonged antihypertensive activity after oral administration at 3 mg/kg (Table 4). The apparent low bioavailability observed with this class of Ang II

Table 3. Binding Affinities of Acylsulfonamides (17) and (18)

		IC ₅₀ (nM) 19			
Ex. No.	X	R	ĂŤ ₂	AT ₁	
17a	-N(CH ₂ Ph)COPh	i-BuO	100	8	
17b	-N(n-Bu)CO-n-Pr	-Bu)CO- <i>n</i> -Pr <i>n</i> -Pr 90		2	
18a	4-(2-pyridyl)piperazinyl	c-Pr	600	10	
18b	4-(2-pyridyl)piperazinyl	Ph	500	6	
18c	4-(2-pyridyl)piperazinyl	azinyl <i>n</i> -BuO		6	
18d (XM953)	4-(2-pyridyl)piperazinyl	n-Pn	20	6_	

antagonists may be due to their zwitterionic character. Modifying the imidazole-5-carboxy group ((14), (15)) or the basic nitrogens ((12a), (12f), (16)) of XH148 led to greatly decreased AT₂ affinity. However, the piperazine amide (16) did show improved antihypertensive activity vs. (12j) (XH148) after oral administration in RHR (ED₃₀ ~ 3 mg/kg), as well as potent i.v. activity (ED₃₀ = 0.018 mg/kg). No differences in efficacy, or effect on blood pressure and heart rate attributable to the AT₂ binding affinity were observed for the compounds in the present study as compared to losartan.

Table 4. Activity of Selected Compounds in Renal Hypertensive Rats

	$IC_{50} (nM)^{19}$		$ED_{30} (mg/kg)^{22}$	
Ex. No.	AT ₂	AT ₁	i.v.	p.o.
Losartan	10,0004	5.54	0.784	0.59
116	90	3	0.04	~3
12j (XH148)	60	4.2	0.003	>3
12h (XH669)	50	5	0.004	>3
1 <i>7</i> b	90	2	0.18	1.65
18d (XM953)	20	6	0.13	>10

4-Substituted imidazoles (11b), (12j) (XH148), (12h) (XH669), (17b) and (18d) (XM953) show significant AT₂ affinity while retaining nanomolar AT₁ affinity. Two analogs, (11b) and (17b), exhibit significant antihypertensive effects upon oral administration. However, because of the low apparent oral bioavailability observed in this class of imidazoles, and the need for lower AT₂/AT₁ IC₅₀ ratios, other approaches to the incorporation of AT₂ affinity in nonpeptide Ang II antagonists were pursued.

Acknowledgment: The authors wish to thank our collaborators at Merck Research Laboratories for helpful discussions, especially Drs. E. E. Allen, P. K. Chakravarty, S. E. de Laszlo, T. W. Glinka, N. J. Kevin, N. B. Mantlo, E. M. Naylor, R. A. Rivero, W. J. Greenlee and A. A. Patchett. We also wish to thank J. Calabrese (DuPont) for the crystallographic analysis of deprotected (6), and R. Bernard, E. Crain, R. Hallowell, T. T. Nguyen, C. A. Watson and A. M. Zaspel for their technical assistance.

References and Notes

- For Paper I in this series, see Quan, M.L.; Olson, R.E.; Carini, D.J.; Ellis, C.D.; Lalka, G.K.; Liu, J.; VanAtten, M.K.; Wexler, R.R.; Chiu, A.T.; Wong, P.C.; Timmermans, P.B.M.W.M. Biorg. Med. Chem.
- Lett. 1994, 4, in press.

 Presented at the 206th ACS National Meeting, Chicago IL.: Olson, R.E.; Liu, J.; Lalka, G.K.; Duncia, J.V.; Wexler, R.R.; Chiu, A.T.; McCall, D.E.; Wong, P.C.; Timmermans, P.B.M.W.M. Abstracts of Papers, 206th Am. Chem. Soc. Natl. Mtg., Aug. 22-27, 1993. MEDI 77.
 Wong, P.C.; Hart, S.D.; Zaspel, A.M.; Chiu, A.T.; Ardecky, R.J.; Smith, R.D.; Timmermans, P.B.M.W.M.
- J. Pharmacol. Exp. Ther. 1990, 255, 584.
- Wong, P.C.; Chiu, A.T.; Duncia, J.V.; Herblin, W.F.; Smith, R.D.; Timmermans, P.B.M.W.M. Trends Endocrinol. Metab. 1992, 3, 211.
- Christen, Y.; Waeber, B.; Nussberger, J.; Porchet, M.; Lee, R.J.; Timmermans, P.B.M.W.M.; Brunner, H.R.; Borland, R.M. Circulation 1991b, 83, 1333.
- For references, see Timmermans, P.B.M.W.M.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.M.; Smith, R.D. Pharmacol. Reviews 1993, 45, 205.
- (a) Blankley, C.J.; Hodges, J.C.; Klutchko, S.R.; Himmelsbach, R.J.; Chucholowski, A.; Connolly, C.J.; Neergard, S.J.; Van Nieuwenhze, M.S.; Sebastian, A.; Quin III, J.; Essenburg, A.D.; Cohen, D.M. J. Med. Chem. 1991, 34, 3248. (b). Klutchki, S.; Hamby, J.M.; Hodges, J.C. Biorg. Med. Chem. Lett. 1994, 4, 57. (c) VanAtten, M.K.; Ensinger, Chiu, A.T.; McCall, D.E.; Nguyen, T.T.; Wexler, R.R.; Timmermans, P.B.M.W.M. J. Med. Chem. 1993, 36, 3985. (d) Wu, M.T.; Ikeler, T.J.; Ashton, W.T.; Chang, R.S.L.; Lotti, V.J.; Greenlee, W.J. Biorg. Med. Chem. Lett. 1993, 3, 2023.
- (a) Zhang, J.S.; VanZwieten, P.A. Br. Pharmacol. Soc. 1992, 105, 85P. (b) Ries, U.J.; Mihm, G.; Narr, B.; Hasselbach, K.M.; Wittneben, H.; Entzeroth, M.; Vanmeel, J.C.A.; Wienen, W.; Hauel, N.H. J. Med. Chem. 1993, 36, 4040.
- (a). Weimer, G.; Schölkens, B.A.; Busse, R.; Wagner, A.; Heitsch, H.; Linz, W. Pharm. Pharmacol. Lett. 1993, 3, 24. (b). Wagner, A.D.; Englert, H.; Kleemann, H.W.; Gerhards, H.; Schölkens, B.; Becker, R.; Linz, W. Eur. Pat. Appl. EP 503162A1 1992.
- Mantlo, N.B.; Kim, D.; Ondeyka, D.; Chang, R.S.L.; Kivlighn, S.D.; Siegl, P.K.S.; Greenlee, W.J. Biorg. Med. Chem. Lett. 1994, 4, 17.
- 11. Glinka, T.W.; de Laszlo, S.E.; Siegl, P.K.S.; Chang, R.S.L.; Kivlighn, S.D.; Schorn, T.S.; Faust, K.A.; Chen, T-B.; Zingaro, G.J.; Lotti, V.J.; Greenlee, W.J. Biorg. Med. Chem. Lett. 1994, 4, 81.
- 12. Kevin, N.J.; Rivero, R.A.; Greenlee, W.J.; Chang, R.S.L.; Chen, T.B. Biorg. Med. Chem. Lett. 1994, 4,
- 13. Carini, D.J.; Ardecky, R.J.; Ensinger, C.L.; Pruitt, J.R.; Wexler, R.R.; Wong, P.C.; Huang, S-M.; Aungst, B.J.; Timmermans, P.B.M.W.M. Biorg. Med. Chem. Lett. 1994, 4, 63.
- 14. Ardecky, R.J., unpublished work; and see Reference 15.
- 15. Duncia, J.V.; Carini, D.J. U.S. Patent 5,138,069, 1992.
- 16. (a). The structure of (6) was confirmed by X-ray crystallographic analysis of the detritylated free acid. (b). Olson, R.E. U.S. Patent 5,219,856, 1993. (c). Yanagisawa, H.; Amemiya, Y.; Kanazaki, T.; Fujimoto, K.; Shimoji, Y.; Fujimoto, Y.; Sada, T.; Mizuno, M.; Koike, H. Biorg. Med. Chem. Lett. 1994, 4, 177.
- 17. Levin, J.; Turos, E.; Weinreb, S.M. Synth. Commun. 1982, 12, 989.
- 18. The regiochemistry of the aluminum amide addition was assigned on the basis of the previously established pattern of high AT₁ activity for imidazole-5-carboxylates and by analogy to the regioselectivity of the DIBAL-H reduction of diester (5).
- Chiu, A.T.; McCall, D.E.; Price, W.A.; Wong, P.C.; Carini, D.J.; Duncia, J.V.; Wexler, R.R.; Yoo, S.E.; Johnson, A.L.; Timmermans, P.B.M.W.M. J. Pharmacol. Exp. Ther. 1990, 252, 711.
 See Jung, M.E.; Rohloff, J.C. J. Org. Chem. 1985, 50, 4909.
- Naylor, E.M., Chakravarty, P.K., Costello, C.A., Chang, R.S., Chen, T.-B., Faust, K.A., Lotti, V.J., Kivlighn, S.D., Zingaro, G.J., Siegl, P.K.S., Wong, P.C., Carini, D.J., Wexler, R.R., Patchett, A.A., Greenlee, W.J. Biorg. Med. Chem. Lett. 1994, 4, 69.
 Wong, P.C.; Chiu, A.T.; Price, W.A.; Thoolen, M.C.; Carini, D.J.; Johnson, A.L.; Taber, R.I.;
- Timmermans, P.B.M.W.M. J. Pharmacol. Exp. Ther. 1988, 247, 1.